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Abstract

Over the last decade there has been renewed interest in applying exponential time differencing (ETD) time stepping
schemes to the solution of stiff systems. In this paper, we present an implementation of such a scheme to the fully spectral
solution of the incompressible magnetohydrodynamic equations in a spherical shell. One problem associated with ETD
schemes is the accurate calculation of the necessary matrices; we implement and discuss in detail a variety of different meth-
ods including direct computation, contour integration, spectral expansions and recurrence relations. We compare the accu-
racy of six different second-order methods in determining the evolution of a three-dimensional magnetic field under the
action of a prescribed time-dependent flow of electrically conducting fluid, and find that for the timestep restriction
imposed by the nonlinear terms, ETD methods are no more accurate than linearly implicit methods which have the sig-
nificant advantage of being easier to implement. However, ETD methods are more readily extendable than those which
are linearly implicit and will become much more advantageous at higher order.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Stiff systems of equations often arise when solving partial differential equations with spectral methods.
These problems are characterised by having a large range of timescales: often the large-scale solution sought
will vary much more slowly in time than small perturbations to it decay or disperse. Because of numerical sta-
bility constraints, explicit time stepping schemes require these (usually uninteresting) transients to be resolved,
forcing the user to choose a small time step with a concomitant high computational cost. Larger time steps
may be taken when using schemes designed for stiff problems [1] that are now only limited by accuracy,
namely linearly implicit and a variety of nonlinear methods including exponential time differencing [2,3].
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Stiff problems arise in many areas where vastly different timescales all play a role, for example in reaction
kinetics and in the modelling of electrical circuits; more importantly to the subject of this paper, they occur in
the solutions of the Navier–Stokes and magnetic induction equations of magnetohydrodynamics (MHD). The
stiffness in these latter problems is generated by the (second order) linear diffusive damping of flow velocity or
magnetic field respectively, both of which occur on timescales scaling as the square of the lengthscales
involved; small-scales therefore diffuse on timescales which are minuscule compared to the evolution of the
large-scale solution. This discrepancy is exacerbated by the use of Chebyshev spectral methods which,
although providing fast spatial convergence compared to other local methods (e.g. finite difference or finite
element), generate spurious diffusive timescales of O(N�4) where N is the spectral truncation parameter, com-
pared to the true timescales of O(N�2) [4, p. 237]. Methods suitable for stiff problems are therefore required for
such diffusive terms, for explicit schemes would require prohibitively small time steps of size O(N�4) for sta-
bility. The nonlinear terms in the equations are usually timestepped with an explicit scheme because any other
choice would be computationally too expensive, in general involving iterative methods. The restriction on the
time step from these terms, being determined by the CFL stability criterion, is not as severe as that on the stiff
part and is typically O(N�2) for non-periodic spectral methods.

One of the most sought after characteristics of a timestepping scheme is A-stability: the property that phys-
ically decaying solutions are numerically damped for any choice of time step. This is highly desirable for stiff
problems since fast decaying perturbations would be damped even with time steps much longer than their life-
time. Linearly implicit schemes are restricted from having an order higher than two if A-stability is required
(this is the second Dahlquist stability barrier, see e.g. [5]); despite their simplicity and frequent usage they are
therefore not extendable to high order. A subset of these, the backwards differencing schemes are frequently
used in stiff problems because although they may not be A-stable for orders greater than two, they do correctly
damp non-oscillatory decaying perturbations (but not those which are oscillatory in general); they are however
unstable for orders greater than six. Nonlinear schemes are not restricted by the Dahlquist Barrier and may be
generalised to arbitrary order: the exponential time differencing (ETD) method treats the linear diffusion term
exactly (and so is automatically A-stable); amongst others some further possibilities are the integrating factor
(competitive in certain problems) and implicit Runge–Kutta methods (often costly to implement).

Over the last decade, ETD methods have made a resurgence in the literature [2,6–8] and in recent studies
by Kassam and Trefethen [9] and Cox and Matthews [2] who solved a variety of 1D stiff equations, they
were shown to be the most accurate of the range of methods implemented. Methods like ETD, based on
the exact treatment of the linear terms, have not been popular to implement since they require the use of
matrix exponentials, presenting some difficulties when the spatially discretised diffusion operator is not diag-
onal. However, even in cases where this discretised matrix is large and dense, various procedures exist to
speed up the necessary computations, including Schur factorisation [10] or Krylov subspace methods [11].
The spectral discretisation adopted in this paper renders the discretised diffusion operator block banded
and so each block can be treated individually; the computation of any such associated matrix exponentials
are therefore relatively efficient. A further issue with ETD schemes is the accurate computation of other nec-
essary matrices [9,12]. Various methods have been proposed including contour integration [9], recurrence
relations [8] and spectral expansions [13]. These methods are implemented and compared in terms of their
accuracy in Section 5.

In this paper, we present an ETD method suitable for solving the equations of magnetohydrodynamics.
Since we focus ourselves on the details of the time stepping technique however, we only include a brief sum-
mary of the derivation of the two model equations that we are required to solve (which is now fairly standard,
e.g. [14–16]) in Section 2. In Section 3 we introduce the ETD scheme along with some common alternatives
and present an implementation for our model equations in Section 4. The problem of accurately computing
the required matrices is addressed in Section 5 and in Section 6 we compare six time stepping techniques in the
evolution of a 3D magnetic field solution.

2. The equations of magnetohydrodynamics

The equations of magnetohydrodynamics in an electrically conducting incompressible non-rotating med-
ium may be written in the following non-dimensional form:
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which are coupled with the conditions $ � u ¼ $ � B ¼ 0. In the above equations, the magnetic field energy is
scaled with the kinetic energy, and the parameters Re = UL/m and Rm = UL/g are the kinetic and magnetic
Reynolds numbers, respectively, U and L being typical velocity and length scales and g and m the magnetic
and viscous diffusivities; the vector F represents any external forces. The domain of interest is a spherical shell:
r 2 [ri, ro] where we will take ri = 1/2, ro = 3/2 and (r,h,/) are spherical polar coordinates.

Many codes have been developed to solve these equations, most of which represent the divergence-free flow
and magnetic fields in toroidal–poloidal decomposition (e.g. [14–16]) and adopt a Crank–Nicolson timestep-
ping scheme. A popular choice of spatial discretisation is in terms of spherical harmonics in solid angle and
Chebyshev polynomials in radius. Such fully spectral methods converge to the unknown solution exponen-
tially fast, deal well with (global) magnetic boundary conditions and avoid the stringent CFL criterion at
the poles incurred by convergent grid points (see e.g. [4]). Other possibilities, particularly in the choice of
radial discretisation have been employed by other authors; a comparison of such schemes to solve the mag-
netic induction equation is given in [17].

In the case of the velocity u (and analogously for the magnetic field B), the discretisation of Eq. (1a) into
toroidal–poloidal potential form and spatially into spherical harmonics in solid angle is given by
u ¼ $�
X

lm

T m
l Y m

l ðh;/Þr̂
 !

þ $� $�
X

lm

Sm
l Y m

l ðh;/Þr̂
 !

; ð2Þ
where the time dependent coefficients Sm
l ðr; tÞ and T m

l ðr; tÞ are to be determined. The function Y m
l is a spherical

harmonic of degree l and order m, where 1 6 l 6 LMAX and l P m P 0 where LMAX is the angular truncation
parameter, and r̂ is the unit position vector. By operating on Eq. (1b) with r̂� and r̂ � $� and on (1a) with r̂ � $�
and r̂ � $� $� (thus eliminating the pressure), the equations separate in spherical harmonics and can be re-
duced to the following model forms (see e.g. [16]):
oT m
l

ot
¼ 1

Re

DlT m
l þ F ðu;BÞ; ð3aÞ

Dl
oSm

l

ot
¼ 1

Re

D2
l Sm

l þ Gðu;BÞ; ð3bÞ
where Dl ¼ o2

or2 � lðlþ1Þ
r2 and F and G are nonlinear functions. In what follows we refer to (3a) as the toroidal

equation and (3b) as the poloidal equation in the discretisation of (1a), although both the toroidal and poloidal
components of (1b) are described by (3a) on replacing Re by Rm. We note that the inductive term $� ðu� BÞ
although strictly linear in B couples together all the different spherical harmonic coefficients, and since its com-
putation is the same as the formally nonlinear terms, we group it similarly into F.

To calculate the nonlinear functions F and G, we adopt a method similar to Glatzmaier [14], where we
transform between spectral and physical space. We perform fast transforms in the longitudinal and radial
directions, although dealiasing is only possible in longitude as in the radial direction, factors of 1/r appear that
have no finite Chebyshev representation. In latitude we adopt a slow legendre transform; although alternative
fast transforms are available (e.g. [18]) they are not competitive except at resolutions higher than we require.
The boundary conditions are typically chosen to be non-slip or stress-free for the fluid and a matched condi-
tion for the magnetic field to an electrical insulator or perfect conductor [14,15].

3. Some schemes suitable for stiff problems

In this section, we consider some second order schemes suitable for solving Eq. (3a) which, on discretising
with Chebyshev polynomials (as detailed in Section 4.1), may be written as
dv

dt
¼ Mvþ Fðv; tÞ; ð4Þ
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where M is the discretisation of Dl=Re, v is the vector of unknown Chebyshev coefficients and F is the nonlin-
ear term. The matrix M (for either fluid or magnetic boundary conditions) has eigenvalues which are real and
negative, some of which are large in magnitude and represent decay on a timescale much shorter than that
typical of the nonlinear term; this is therefore a cause of stiffness in the system.
3.1. Linearly implicit schemes

The simplest linearly implicit method of second order is the Crank–Nicolson (CN) scheme (also known as
the Trapezium rule) which may be combined with an Adams–Bashforth scheme for the nonlinear terms and is
defined as
CNAB2 vnþ1 � vn ¼
hM

2
ðvnþ1 þ vnÞ þ

h
2
ð3Fn � Fn�1Þ; ð5aÞ
where h = tn+1 � tn and Fn denotes the value of the nonlinear function vector F at time tn. When F = 0 this
scheme is A-stable: any solution will always decay (with our assumptions on M), although it may not decay
at the correct rate. In particular, the fastest decaying modes favour oscillatory behaviour [5,16], this being a
problem especially for the spuriously high decay rates unavoidable with Chebyshev discretisations.

3.2. Integrating factor and ETD methods

Both integrating factor and ETD methods treat the linear part of Eq. (4) exactly (and so are necessarily
A-stable), but differ in the assumptions used when handling the nonlinear part. We begin by multiplying
Eq. (4) by the factor e�Mt and integrating over one timestep:
vnþ1 ¼ eMhvn þ eMh

Z h

0

e�MsFðvðtn þ sÞ; tn þ sÞ ds; ð6Þ
which as it stands is exact. The matrix exponential is defined in the usual Taylor-series fashion and may be
calculated in a myriad of different ways [19]. The integrating factor method now approximates the vector
Fe�Ms by an extrapolation from previous values in time; for example, the second order Adams–Bashforth
approximation which assumes a linear fit using the values at tn and tn�1 leads to
IFAB2 vnþ1 ¼ eMhvn þ
3h
2

eMhFn �
h
2

e2MhFn�1: ð7Þ
This method generalises to arbitrary order and is equivalent to timestepping the transformed variable
w = e�Mtv which is clearly a good idea if the sought solution decays as eMt, for then w = O(1). However, if
the solution does not decay in this fashion which is generally true if F 6¼ 0, then the introduction of the fast
decay timescale into the scheme when it does not exist in the solution introduces large errors into the system [4,
p. 268]. Additionally such schemes do not preserve fixed points of the equations that they discretise.

Exponential time differencing schemes approximate F, instead of e�MsF, by polynomial extrapolation from
previous values; this assumption does not introduce an unwanted fast timescale into the solution and similarly
the scheme may be generalised to arbitrary order. There are many variants, but for the purposes of this paper
we will use the second order Adams–Bashforth approximation of F which yields the ETD2 scheme of Cox and
Matthews [2]:
ETD2 vnþ1 ¼ eMhvn þ hE1ðhMÞFn þ hE2ðhMÞFn�1; ð8Þ

where the functions E1 and E2 are defined as
E1ðzÞ ¼
ð1þ zÞez � 1� 2z

z2
; E2ðzÞ ¼

1þ z� ez

z2
: ð9Þ
A further alternative, as used by Pisarenko et al. [20] and Tilgner [16] is to replace F in Eq. (6) by a constant.
One optimal choice is that derived from the second order Adams–Bashforth approximation, being the linear
interpolant at time tn + h/2 of the nonlinear terms at times tn and tn�1:
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ETDC2 vnþ1 ¼ eMhvn þ
1

2
ð3Fn � Fn�1ÞeMh

Z h

0

e�Ms ds ¼ eMhvn þ
h
2
ð3Fn � Fn�1ÞE3ðMhÞ; ð10Þ
where E3(z) = (ez � 1)/z = E1(z) + E2(z). This scheme is second order and preserves fixed points.

4. An implementation of the ETD2 scheme

The ETD2 method may be directly implemented for the toroidal equation (3a) as it is already of the correct
form. The only issue is how to discretise the operator Dl in a well defined way; as with most timestepping
methods, the biggest problem is how to impose the two boundary conditions. In all cases we choose a spectral
method: expanding in Chebyshev polynomials and formulating a scheme to determine their unknown coeffi-
cients. We could have chosen to solve the equations using a collocation method with the appropriate differ-
entiation matrices [9,21] which would have produced a similar analysis. However, we find it easier to
implement arbitrary linear homogeneous boundary conditions in the spectral case. An alternative Galerkin
scheme, in which we expand in a basis that explicitly satisfies all boundary conditions is discussed in Section
4.2 and Appendix A.

4.1. Solving the toroidal equation with a Chebyshev-tau method

In order to solve Eq. (3a) we adopt an expansion in terms of Chebyshev polynomials:
T m
l ¼

XN

n¼0

anT nðf ðrÞÞ; ð11Þ
where f ðrÞ ¼ 2r�ðroþriÞ
ro�ri

is the linear mapping of the physical domain [ri, ro] to [�1,1] and Tn is a Chebyshev poly-
nomial of degree n. One simple approach might be to form DN

l , the discretisation of Dl within the basis of
Chebyshev polynomials (up to a maximum degree N), each matrix element ½DN

l �ij being the projection of
DlT jðf ðrÞÞ onto Ti(f(r)), efficiently computed using a quasi-dealiased transform. Substituting this matrix into
the ETD method however turns out to be a poor idea as the eigenvalues of DN

l are scattered over C; in par-
ticular, eigenvalues with a positive real part arise that make the scheme unstable. The failure is due to the
exclusion of the boundary conditions: they must be somehow incorporated into the matrices to keep the eigen-
values on the negative real axis.

A more sensible alternative is similar to those commonly used in differentiation matrix schemes in which
boundary conditions can be implicitly incorporated into the discretisation [21,22]. We can formulate a spectral
equivalent of this idea by forming the matrix product Ds ¼ DN 0

l E where DN 0
l is the upper N � 1 rows of (the

(N + 1)2 matrix) DN
l and E is an ‘‘extension matrix’’ of dimensions (N + 1) · (N � 1) which maps a vector

of Chebyshev coefficients of length N � 1 (i.e. of degree N � 2) to one of length N + 1 by determining the extra
two coefficients through the boundary conditions. Multiplication by DN 0

l E, a square matrix of dimension
(N � 1)2, is equivalent to taking a Chebyshev polynomial of degree N � 2, extending it to degree N by enforc-
ing the boundary conditions, taking the projection of the result of the operator Dl onto the space of Cheby-
shev polynomials but truncating the result to degree N � 2. This method is easily generalised to any number of
arbitrary homogeneous boundary conditions which are all essentially imposed by the matrix E. The ETD2
scheme formulated using M = Ds/Re is stable since Ds has the correct eigenvalue spectrum.

Note that after each timestep we will have only calculated the first N � 1 Chebyshev coefficients by the
ETD2 scheme (as restricted by the dimensions of our matrix Ds) of our solution. The boundary conditions
are then used for a second time to determine the two remaining coefficients.

4.2. Solving the poloidal equation

Eq. (3b) is of a distinctly different type to Eq. (3a) because the time and space derivatives are mixed. In
particular, we cannot simply invert the Dl operator, reducing its form to (3a) because in general we do not
know the boundary conditions for DlS

m
l . We must also be careful not to lose the fourth order character of

the equation by subsequent matrix manipulations, as we have four boundary conditions to impose.
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The problem of mixed derivatives is dealt with in many different schemes for timestepping the Navier–
Stokes equations; if the scheme retains all four spatial derivatives in each stage then we can simply substitute
matrix rows which implement the equation to those implementing the boundary conditions (e.g. [15]). We
avoid these problems however if we use a Galerkin scheme, expanding in terms of a basis comprising recom-
bined Chebyshev polynomials which implicitly satisfies all boundary conditions; a differentiation matrix ana-
logue has been formulated successfully [23]. Because the boundary conditions have been taken care of, we can
merely multiply through by the inverse discretisation of Dl and (3b) becomes of the same form as (3a). How-
ever, we find that although our implementation is stable for solving (3a), it is unstable for (3b) unless the time-
step used is very small, making it practically useless; the details are given in Appendix A. A similarly
unexpected and unfortunate instability has been previously found by Hollerbach [15] when applying a predic-
tor–corrector method to the same equations. Instead, we follow an alternative but more involved two step
approach called the influence matrix method [16,24].

4.3. An influence matrix method for the poloidal equation

To solve Eq. (3b), we first remove the troublesome Dl operator acting on the time derivative by solving the
second order spatial problem for /:
Dl/ ¼ G; ð12aÞ

/ ¼ oSm
l

ot
� 1

Re

DlS
m
l : ð12bÞ
The four relevant boundary conditions are that Sm
l must vanish and satisfy a further mixed homogeneous con-

dition at either end of the radial domain. Nothing is known about the behaviour of / on either boundary. In
continuous variables, the solution / of (12a) will be the sum of a complementary function and a particular
integral, the undetermined coefficients hidden in the complementary functions being fixed by the boundary
conditions. We can proceed despite the unknown boundary conditions on / by noting that any fictitious
boundary conditions determine one particular integral. We can then write the solution of (12a) as
/ ¼ A/1 þ B/2 þ w; ð13Þ

where w is the particular integral with w(ri) = w(ro) = 0, and A/1 and B/2 are the two complementary func-
tions of (12a), being /1 = r�l and /2 = rl+1 (or any linear combination thereof). Determining w is numerically
achieved by multiplying the discretisation of G by the matrix D�1

s , where Ds is formulated using zero boundary
conditions. In fact, to make the method numerically better conditioned we use /1 = (a1r�l + a2rl+1),
/2 = (b1r�l + b2rl+1) where a1,a2,b1, b2 are chosen to make /1(ri) = 0,/1(ro) = 1; /2(ri) = 1,/2(ro) = 0. The
boundary conditions (which are yet to be implemented) determine the values of A and B.

The second stage is to solve
oSm
l

ot
� 1

Re

DlS
m
l ¼ wþ A/1 þ B/2; ð14Þ
by applying Eq. (8) directly with zero boundary conditions. Since A/1 and B/ are constant in time, their con-
tribution to Sm

l ðtnþ1Þ is given exactly by the ETD2 method as
hE3ðhDs=ReÞðAq1 þ Bq2Þ; ð15Þ

where qi are the quasi-dealiased (as r�l has no finite representation) Chebyshev representations for /i. At the
end of each timestep (noting that the zero conditions are already imposed by stage two) we determine A and B

by imposing the remaining boundary conditions.
We note that the matrices required in the ETD2 scheme to timestep the nonlinear terms in Eq. (3b) (i.e.

D�1
s E1ðhDs=ReÞ and D�1

s E2ðhDs=ReÞ) are efficiently computed from those required to timestep equation (3a).

5. Calculating the ETD matrices accurately

As pointed out by Kassam and Trefethen [9] in their differentiation matrix implementation of ETD
schemes, a computational problem arises when evaluating the necessary matrices, such as E1(hM), when the
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argument hM has small eigenvalues. This may either happen when following a transient in detail (i.e. h� 1),
or when M contains eigenvalues close to zero, and may be elucidated by considering the scalar equation
Fig. 1.
precisi
plotted
Hochb
E1ðzÞ ¼
ð1þ zÞez � 1� 2z

z2
; ð16Þ
when z is small. As z! 0 both the numerator and denominator are O(z2) but their ratio is O(1). Consequently,
large relative errors are introduced because any roundoff due to finite precision becomes magnified. The prob-
lem is demonstrated in Fig. 1(a) which shows the error in the calculation of hE1(hDs/Rm) as a function of h

for Rm = 1, performed in Matlab double (8-byte) precision as short-dashed, compared to a higher precision
(16-byte) Fortran calculation as the solid line. Both errors are computed relative to a high accuracy calculation
described below which we take to be exact. As h decreases, it is clear that hE1 does not behave as O(h) as it
should in either case, although the absolute error is fairly small being of O(10�9) or smaller for the 8-byte cal-
culation and O(10�16) for the 16-byte. The accuracy problem however is exacerbated by using a higher value
of Rm which shifts all the eigenvalues towards zero. In the same plot, the long-dashed line shows the same
error as a function of R�1

m for a typical time step of h = 10�3, plotted on the same axes. For physically inter-
esting values of Rm = O(105), the absolute error is significant, being O(10�4) which corresponds to a relative
error of 10%.

In the above example and the rest of Section 5, we analyse different ways of computing hE1(hDs) where Ds is
the matrix discretisation of Dl (defined in Section 4.1) of size 19 · 19 associated with spherical harmonic
degree l = 1 and poloidal electrically insulating boundary conditions. We determine the absolute error in
our calculations as the matrix norm of the matrix difference relative to a high-precision calculation performed
in the package Maple using 35 digits of accuracy, which we take to be exact for our purposes. An analysis of
the computational cost of a similar range of numerical schemes is given in [25]. It is clearly unsatisfactory that
the required matrices become unusably inaccurate for large Rm (or Re) and small h. Furthermore, the problem
is exacerbated in higher order schemes, since both the numerator and denominator in the high order equiva-
lent of E1 behave as O(zn) where n is the order of the method. The ETD methods are therefore not readily
extendable to arbitrary order when computing the necessary matrices directly.

When we are required to calculate matrix exponentials, there are a variety of schemes available (see [19]).
One of the best is a Padé approximation (order 6 is sufficient) coupled with scaling and squaring which is
implemented in the Expokit package [26]; this is in fact identical to that used in the package Matlab.

5.1. Taylor series and recurrence

One simple solution to the problem of computing E1(z) might be to use a Taylor series for ‘‘small’’ values of
z and the usual formula for ‘‘large values’’. While this might work well at both extremes, there is an ill-defined
-25
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The absolute error in the computation of hE1(hDs/Rm) as a function of h for Rm = 1; (a) shows the accuracy of Matlab double
on (8-byte) as short-dashed, Fortran quadrapolar precision (16-byte) as solid and the error as a function of R�1

m with h = 10�3

on the same axes as long-dashed. (b) shows the accuracy of the recurrence relations of Beylkin et al. as solid and the Beylkin–
ruck relations as dashed.
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grey area in the middle where neither method works well [9]. An alternative, following the suggestion of Beyl-
kin et al. [8] is to rescale z so that it is suitably small – a Taylor series with (say) seven terms therefore being an
excellent approximation, and then using recurrence relations to rescale the result. If we define the quantities
Q0ðzÞ ¼ ez; Q1ðzÞ ¼
ez � 1

z
; Q2ðzÞ ¼

ez � 1� z
z2

; ð17Þ
then E1(z) = Q1(z) + Q2(z) and we may use the following recurrence:
Q2ð2zÞ ¼ ðQ1ðzÞ
2 þ 2Q2ðzÞÞ

4
; ð18aÞ

Q1ð2zÞ ¼ ð1þ ezÞ
2

Q1ðzÞ: ð18bÞ
In the matrix case, we choose the initial rescaling to be hDs/2
k where k is an integer chosen such that the matrix

has a maximum singular value of at most 1. An alternative suggested by Hochbruck et al. [6] uses instead the
formula
Q1ð2zÞ ¼ Q1ðzÞ
2
ðzQ1ðzÞ þ 2Þ; ð19Þ
in place of (18b). This scheme has the property that we need never compute a matrix exponential; indeed, the
Beylkin et al. relations may be similarly formulated if we make use of the identity Q0(2z) = Q0(z)2 in Eq.
(18b). Fig. 1(b) shows the error as a function of h for these two schemes: that based on (18a) and (18b) as
solid and that based on (18a) and (19) as dashed. Both exhibit the proper O(h) behaviour as h! 0 but the
dashed curve becomes unstable at h = O(1) leading to large errors. The relations (18a) and (18b) work extre-
mely well for every h considered.

5.2. Contour integration

An alternative and elegant method was proposed in Kassam and Trefethen [9] which is based on contour
integration in the complex plane using the identity
E1ðzÞ ¼
1

2pi

I
C

E1ðtÞ
t � z

dt; ð20Þ
where the contour C must contain z in its interior and i2 = �1. For matrices, a similar form exists:
E1ðDshÞ ¼
1

2pi

I
C

E1ðtÞ
tI� Dsh

dt; ð21Þ
where C must contain all the eigenvalues of Dsh and I is the appropriately sized identity matrix. The beauty of
such a method lies in the fact that we may choose the contour to be sufficiently far from the origin that the
numerical instability is eradicated: the troublesome part of the integrand E1(t) is never evaluated for small |t|.
Such integration can be efficiently evaluated by use of the trapezium rule; additionally, symmetry may be
exploited if we choose the quadrature points to be symmetric with respect to the real axis: we need only inte-
grate in the upper (or lower) half plane and take the real part, since we know that the result must be real. Dif-
ferent shaped contours are investigated by Kassam [12] and we try some of the ideas below; two examples are
shown in Fig. 2(b).

We will consider elliptical contours symmetric with respect to the real axis (of which a circle is a particular
case) that can be parameterised as
t ¼ x0 þ A cos hþ iB sin h; ð22Þ

where x0 is its centre. If m quadrature points in the upper half plane are chosen to be tj = x0 + Acoshj +
iB sinhj, j = 1, . . . ,m, where hj = (2j � 1)p/2m, then E1(Dsh) may be approximated by Em

1 ðDshÞ where
Em
1 ðDshÞ ¼

1

m
R
Xm

j¼1

ðtjI� DshÞ�1E1ðtjÞðB cos hj þ iA sin hjÞ: ð23Þ



-25

-20

-15

-10

-5

0
lo

g 1
0E

rr
or

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
log10 h

0

0

5000

10000

15000

Real axis

Im
ag

 a
xi

s

(a) (b)

-

-

-5000

10000

15000

-30000 -15000

Fig. 2. Plots showing the accuracy of hE1(hDs) as a function of h where Ds is a 19 · 19 discretised diffusion matrix as described in the text.
(a) shows a variety of contour methods: solid represents circular contours around each eigenvalue in the diagonalised system, short-dashed
is the large circular contour and long-dashed is the large ellipse; the latter two contours which both enclose all the eigenvalues are shown in
(b) for h = 1 with eigenvalues of Ds marked on as crosses. The most negative eigenvalue of Ds is approximately �3 · 104.

832 P.W. Livermore / Journal of Computational Physics 220 (2007) 824–838
One simple application of the method is to diagonalise Dsh and use the scalar version of Eq. (23) on each
eigenvalue separately. We can write E1(Dsh) = VE1(K)V�1 where V is the matrix containing the eigenvectors
of Dsh as columns and K is the diagonal matrix of the eigenvalues. A suitable suite of contours centred on each
(real) eigenvalue q < 0 are circles of radius min(�q/2,1) (which avoids the origin). Fig. 2(a) shows the error of
hE1(Dsh) as a function of h (solid curve) for this method which shows a similar lack of accuracy as h! 0 as the
8-byte direct calculations. The error will get worse with increasing size of Ds as the added complication of com-
puting the eigenvalues accurately becomes progressively more difficult.

Instead, we consider two ellipses centred on x0 ¼ 1
2
k where k is the most negative eigenvalue of Dsh,

A = �x0 + 1 and we choose B = A and B = A/10. These contours are shown in Fig. 2(b) with the eigenvalues
marked as crosses. This choice of A and x0 ensures that the contours enclose all the eigenvalues and do not
pass through the origin: in fact they cross the real axis at t = 1 and t = k � 1. Fig. 2(a) shows their accuracy in
determining hE1(hDs) for various values of h all evaluated with m = 256; short dashed shows the circular con-
tour, long dashed the ellipse. This value of m is vastly more than is required ([9] use m = 32) but with such a
high value we can be sure that the error is due to the choice of method and not to the truncation in m. As will
be noted immediately, these contour methods behave very well as h! 0, the circular contour being more accu-
rate for most values of h shown, but have large errors as h approaches O(1). The reason why these fail seems to
be linked to the increased size of the contour which is required to enclose all the eigenvalues. The flattened
ellipse offsets this effect a little because the magnitude of |t| on the contour is lower; however, it too suffers
catastrophically at large h. This problem will only get worse as the truncation is increased, since the most neg-
ative eigenvalue scales as O(N4) and the contours become concomitantly larger.

5.3. An extension: keeping the contour small

To avoid the numerical imprecision when using large contours, an alternative approach as suggested by
Kassam [12] is to use an ellipse which is only defined (for example) on the interval [�41,1], that is, centred
at �20 and having A = 21, B = 2 (say). However, such a method which misses out many of the eigenvalues
is only accurate when their contribution is negligible; while this is true for the exponential function, it is
not the case for E1(z). This is illustrated in Fig. 3 by the solid line, where we show the error of hE1(Dsh) as
a function of h using this ‘‘small’’ ellipse. For values of h� 1 all the eigenvalues of hDs lie inside [�41,1]
and so the method is accurate; however, as h increases, some of the eigenvalues begin to be missed out and
the error increases dramatically. The number of missed eigenvalues will grow as the truncation becomes larger
and the method becomes increasingly inaccurate.
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A further alternative to keep the contour small is to consider the linear rescaling w = �t where � = �1/k > 0
under which we can rewrite (21) as
E1ðDshÞ ¼
1

2pi

I
C
ðwI� �DshÞ�1E1ðw=�Þ dw; ð24Þ
where C is chosen to enclose the eigenvalues of �Dsh that lie only in the interval [�1,0). As usual, we must be
careful to avoid the origin by a sufficient margin, although to pass too far into the right half plane would cause
other problems since then w/�� 1 and severe roundoff error would result due to the dominating exponentials
when computing E1(w/�). A contour on which the real part of w/� is suitably bounded is the ellipse centred on
�1/2 with A = 10� + 1/2, B = A/10; a plot of the accuracy is shown in Fig. 3(a) as a dashed line. This method
again fails as h becomes large, and in any event the notion of being ‘‘close’’ but not ‘‘too close’’ to the origin is
rather vague, probably case specific and is best avoided.

5.4. A Chebyshev expansion method

A further alternative method, following [13], is based on the Chebyshev expansion of the exponential func-
tion. If the eigenvalues of hDs lie in the interval [�2R, 0], then writing z = (w � 1)R where �1 6 w 6 1 we may
write
ez ¼
X1
k¼0

bkT kðwðzÞÞ; bk ¼ e�RckIkðRÞ; ð25Þ
where Ik is a modified Bessel function of order k [27] and c0 = 1, ck = 2,k P 1. This relation may then be ap-
plied directly to the computation of ehDs , forming the matrices Tk(hDs) by the standard three-term recurrence
relation in degree satisfied by Chebyshev polynomials. The coefficients for the expansion of E1ðzðwÞÞ ¼P

kdkT kðwðzÞÞ can be immediately found by solving the pentadiagonal system for dk, at some maximal trun-
cation of degree K:
ð1þ Rðw� 1ÞÞ
X

k

bkT kðwÞ � 1� 2Rðw� 1Þ ¼ R2ðw� 1Þ2
X

k

dkT kðwÞ; ð26Þ
where we make use of the identity (w � 1)2Tk(w) = 1/4(Tk�2(w) � 4 Tk�1(w) + 6Tk(w) � 4Tk+1(w) + Tk+2(w)).
Fig. 3(b) shows the error as a function of h for two different truncations K = 50 (solid) and K = 500 (dashed).
The main difficulty with this method is the computation of Ik(R) when R is large; the problem is hinted at in
the behaviour of the solid curve at h = 10�2 when the modified Bessel function series does not converge suf-
ficiently. Indeed, for h P 10�1, standard double precision routines cannot compute Ik(R) as it is too large: they
return an ‘‘Inf’’ error code (hence the absence of such points from the figure). For most of the values of h



834 P.W. Livermore / Journal of Computational Physics 220 (2007) 824–838
shown, interestingly the computation with a smaller truncation is more accurate, although neither line shows
the O(h) behaviour required for small h. This method is therefore not competitive as it neither shows sufficient
accuracy at small h nor can it be used with large time steps.

5.5. Summary of methods

The most accurate methods of those we have implemented in determining hE1(Dsh) are the recurrence rela-
tions of Beylkin et al. [8] and the Fortran 16-byte direct calculation. The latter method has the problem that it
is computationally slow at least on 32-bit computers and is not supported by all current compilers. The best
method therefore is that of the recurrence relations, which may be coded in the same 8-byte precision as the
rest of the code. We note though that of the two recurrence relations implemented, one was unstable for large
timesteps. We therefore caution against using such relations to calculate general ETD-required quantities
without first testing their accuracy and stability; indeed, the accuracy exhibited here could well be case specific.
Despite their elegance, neither the integration nor the spectral expansion methods are sufficiently accurate
when h becomes large and are therefore not of practical use.

6. A comparison of time stepping methods

In this section, we compare the accuracy of a variety of different second order time stepping methods in
computing the evolution of the magnetic field in a fully 3D calculation as determined by Eq. (1b). Our goal
is to determine whether or not the effort involved in implementing the ETD scheme makes it a worthwhile
choice of timestepping method, especially in view of the accuracy problems encountered in Section 5. We mea-
sure the accuracy as the absolute difference of magnetic energy (

R
V B2 dV where V is the spherical shell of inner

and outer radii ri = 1/2, ro = 3/2), between the results of each timestepping scheme and an ‘‘exact’’ solution
which we define below. In each test, we prescribe the flow u to be that of Hollerbach et al. [28], which is axi-
symmetric and time periodic (with period 8). We additionally fix Rm = 300, which represents a marginally
unstable state, so that the fastest exponentially growing eigenmode of (1b) has a growth rate whose real part
is positive but small. This means that the magnetic energy does not grow or decay too quickly so that we can
perform a comparison over a meaningful length of time. We chose two initial fields both rescaled to have unit
initial energy, one which is physically ‘‘smooth’’, and another which is ‘‘rough’’, the latter being approximately
the fastest growing eigenmode (which is taken to be the magnetic field at t = 40 when using the smooth initial
conditions). The physically smooth initial state was chosen to be of the form
Sm
l ðrÞ ¼ ðr � roÞ2ðr � riÞ2; T m

l ðrÞ ¼ sin
r � ri

ro � ri
p

� �
; ð27Þ
which satisfies electrically insulating boundary conditions; the energy in each harmonic was normalised to be
exponentially decaying both in l and m. Fig. 4(a) shows, for both initial fields, the magnetic energy spectrum in
spherical harmonic degree l and a ‘quasi’ energy spectrum in Chebyshev degree n, defined as the sum of the
squares of all spectral coefficients, both poloidal and toroidal, for any particular Chebyshev degree. We use a
truncation of 47 in spherical harmonic degree and 32 in Chebyshev degree which was sufficient to resolve the
calculations; the Fortran 16-byte precision method was used to compute the ETD matrices.

We now perform a series of runs until t = 100 i.e. 12.5 flow periods, with various time stepping schemes as
summarised in Table 1. The first four methods are all of the form vn+1 = Avn + BFn + CFn�1 and all have an
identical computational cost per time step, each involving the same three matrix-vector multiplications. The
last two methods are multistep of the form vn+1 = a + X (F(a,tn + h) � Fn) and themselves have identical cost.

Tests showed that the largest timestep possible, as dictated by the stability of the explicit treatment of the
nonlinear terms, was h0 = 4 · 10�3 for those methods requiring one transform per timestep (ETD2, IFAB2,
ETDC2, CNAB2) and 2h0 for those requiring two transforms per timestep (ETD2RK, PC2). We use these
choices of timestep to ensure that each run has the same computational cost. The ‘‘exact’’ solution (shown
in Fig. 4(b)) is computed using the ETD2 method with a timestep of h0/20 and has been verified to sufficiently
high accuracy with the PC2 scheme (of Table 1) using a similarly small timestep. We note that for the first time
step, the schemes ETD2, IFAB2, ETDC2 and CNAB2 all take a first order step, although a second-order
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Table 1
Summary of time stepping methods given by their temporal discretisation of dv/dt = Mv + F(v, t). ETD (exponential time differencing),
ETDC2 (ETD scheme of Tilgner), CNAB2 (Crank–Nicolson with Adams–Bashforth), IFAB2 (integrating factor with Adams–Bashforth),
ETD2RK (ETD Runge–Kutta) and PC2 (predictor–corrector based on Crank–Nicolson)

Name Definition Reference

ETD2 A = eMh, B = hE1(Mh)
C = hE2(Mh) Section 3.2

ETDC2 A = eMh, B = 3hE3(Mh)/2
C = �hE3(Mh)/2 Section 3.2

CNAB2 A = (I �Mh/2)�1(I + Mh/2), B = 3h(2I �Mh)�1

C = �h(2I �Mh)�1 Section 3.1

IFAB2 A = eMh, B = 3heMh/2, C = �he2Mh/2 Section 3.2

ETD2RK a = eMhvn + M�1(eMh � 1)Fn

X = M�2h�1(eMh � 1 � hM) See Ref. [2]

PC2 a = (I �Mh/2)�1(I + Mh/2)vn + h(I �Mh/2)�1Fn

X = h(2I �Mh)�1 See Ref. [15]

In the first four methods, vn+1 = Avn + BFn + CFn�1 and in the last two vn+1 = a + X (F(a,tn + h) � Fn).
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multi-step method could have been used instead. Additionally, the boundary conditions are handled identi-
cally in ETD2, ETDC2, IFAB2 and ETD2RK, whereas in CNAB2 and PC2 they replace matrix rows of
the discretised equations before inversion (see [15]).

Figs. 5(a) and (b) show the error in magnetic energy for each time stepping scheme for the two different
initial conditions. We first note that all the methods give an accuracy of O(0.1%) over the time period shown
and would be graphically indistinguishable if overplotted. In fact, in both figures the errors for ETD2, ETDC2
and CNAB2 are almost identical, as are those for PC2 and ETD2RK. Both initial conditions gave qualita-
tively the same picture, namely that for a fixed computational cost, the most accurate methods are ETD2,
ETDC2 and CNAB2, with ETD2 being marginally better. The methods requiring two nonlinear transforms
per timestep behave similarly and have greater error, while the least accurate method is the integrating factor
scheme.

In this particular problem, the timestep is restricted by the nonlinear terms to be sufficiently small that the
linearly implicit scheme CNAB2 can compete with the ETD methods. Since the CNAB2 scheme is significantly
easier to implement, this is the best second order timestepping scheme to use in this problem. However, were
we to use a higher order scheme, or were the nonlinear terms able to permit a larger timestep, it is likely that
the ETD methods would become significantly more accurate as suggested by recent 1D computations [2,9]. In
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particular, it is trivial to extend the ETD2 scheme to arbitrary order, the only difference being that the code is
required to store the nonlinear terms at many previous times. Since it is the evaluation of the nonlinear terms
in such problems that is the most costly, such an extension would not increase the computational cost by any
significant amount.

7. Conclusions

In this paper we have detailed an implementation of an exponential time differencing (ETD) time stepping
scheme in a fully spectral code designed to solve the magnetohydrodynamics equations. One major problem
with ETD schemes is the accurate computation of the necessary matrices; to this effect we compared a variety
of different methods including recurrence relations, contour integration and spectral expansions. We found
that the best, judged both on accuracy and computational expense, was that of the recurrence relations of
Beylkin et al. [8] although the accuracy and stability of such a method could well be case specific. We lastly
presented a comparison of six different second order time stepping schemes in the evolution of a 3D magnetic
field in a spherical shell under the action of a time-dependent prescribed flow. We found that with a timestep
constrained by the stability of the nonlinear terms, the linearly implicit and ETD schemes all exhibited sim-
ilarly high accuracy, the ETD2 scheme of [2] being marginally the best at a fixed number of nonlinear trans-
forms per simulation time. To timestep this problem at second order therefore, the best choice is a Crank–
Nicolson scheme, since of the three most accurate this is the most straightforward to implement. This result
vindicates the choice of method employed in most MHD timestepping codes to date. At higher order however,
ETD methods being much more readily extendable are likely to exhibit higher accuracy than those which are
linearly implicit and will become more advantageous.
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Appendix A. A Galerkin formulation for ETD2

A favourable alternative to the methods detailed in Section 4 is a Galerkin scheme in which we adopt an
expansion in terms of a basis, every member of which explicitly satisfies the boundary conditions; such a basis
may be expediently built from recombined Chebyshev polynomials. On discretising the system with respect to
this basis, the boundary conditions may be essentially forgotten (e.g. [4,17]). Solutions of Eq. (3b) would then
be particularly straightforward as we may immediately invert the Dl operator and timestep what remains,
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being of the form (3a). Although no fast transform exists between a general recombined basis of Chebyshev
polynomials and physical space, we may incorporate both the forwards and backwards slow transforms into
the timestepping matrices, which means that no loss of speed is suffered when timestepping. In some cases
where the boundary conditions allow, the formulation of a Galerkin basis is particularly straightforward,
for example, if the scalar functions Sm

l and dSm
l =dr vanish at both boundaries r = ri, ro (nonslip), we may con-

sider using
bnðrÞ ¼ ðri � rÞ2ðro � rÞ2T nðf ðrÞÞ: ðA:1Þ

However, this procedure does not extend to every equation in our situation: in particular, the magnetic bound-
ary conditions are of mixed type and no such separable formulation is possible.

We now detail our implementation of a Galerkin scheme in the case of two boundary conditions, the exten-
sion to any greater number is immediate. A Chebyshev expansion of maximal degree N which satisfies these
boundary conditions has N � 1 degrees of freedom (since the remaining 2 are uniquely determined through the
boundary conditions). We define the same number of independent basis functions bn, n = 0,1,2, . . . ,N � 2, by
the relation
bnðrÞ ¼ T nþ2ðf ðrÞÞ þ a0T 0ðf ðrÞÞ þ a1T 1ðf ðrÞÞ; ðA:2Þ

where f ðrÞ ¼ 2r�ðroþriÞ

ro�ri
: ½ri; ro� ! ½�1; 1� and a0,a1 are determined by the boundary conditions. We may incor-

porate all these coefficients into a (N + 1) · (N � 1) ‘‘augmented’’ matrix Gaug which holds in each column n

the Chebyshev representation of basis function n. Multiplication of Gaug with a vector defined with respect to
the Galerkin basis simply gives the corresponding vector of Chebyshev coefficients. The matrix G defined by
deleting the last 2 rows of Gaug actually contains the same information as Gaug since we may extend any col-
umn to its two remaining Chebyshev coefficients by use of the boundary conditions (hence the term ‘‘aug-
mented’’ indicating superfluous information). The matrix G is a minimal representation of the Galerkin
basis and is invertible; it therefore gives the transformation between the recombined Chebyshev basis and
the Chebyshev coefficients themselves.

The ETD schemes require a discretisation of Dl with respect to the Galerkin basis, denoted DG, which we
form by projecting DlbjðrÞ, for each bj(r), back onto the basis functions in a least squares methodology with a
weighting function q(r). This is given by DG = B�1L where B and L are
Lij ¼
Z ro

ri

biðrÞDlbjðrÞqðrÞ dr; Bij ¼
Z ro

ri

biðrÞbjðrÞqðrÞ dr: ðA:3Þ
Note that DG contains a factor of B�1 which takes account of the fact that the basis is not orthornormal [17].
We typically choose the (arbitrary) function q(r) to be 1 or r2, the latter representing a quasi energy. The ma-
trix elements of B and L may be computed using Gauss-quadrature on a sufficiently large number of grid
points.

We may implement this in the ETD2 scheme by absorbing the slow transforms between Chebyshev and
Galerkin basis function space, for example by using hGE1(DGh)G�1 in place of hE1(Dsh).

Although we find this scheme to be stable when applied to Eq. (3a), it is unstable when extending the above
methodology with four boundary conditions to Eq. (3b) except for very small time steps, when it agrees with
the influence matrix method we have implemented. This instability seems to stem from a more stringent CFL
restriction on the nonlinear terms and not from the linear part, which has the (correct) negative real
eigenvalues.

It is worth pointing out that this is an analogous method to that suggested by Huang and Sloan [23] who
solve the eigenvalue problem related to the linear part of Eq. (3b) by differentiation matrices. In their scheme,
the polynomial interpolation of the data at the grid points incorporates a multiplicative function which
ensures that the (four) boundary conditions are implicitly satisfied.
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